If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+10n+7=0
a = 2; b = 10; c = +7;
Δ = b2-4ac
Δ = 102-4·2·7
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{11}}{2*2}=\frac{-10-2\sqrt{11}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{11}}{2*2}=\frac{-10+2\sqrt{11}}{4} $
| 59=3+8x | | x/475=20/100 | | 4x-1=8x-12x+64 | | -4k+2(5k-6)=13k-39 | | x/36=25/100 | | 6x^-4x+6=0 | | 12t+10=10 | | 12)-26-4a=-(6+8a) | | x2^+4x+6=0 | | 5q-6q=3 | | 60=14x+4 | | 60=14x*4 | | r2-8=32 | | 2h/3-20=610/21 | | 130=17.5(x)-10 | | 3x=(-105)+6 | | 7+3r+3=8+3r | | 3m+7=31-m | | m+7=-12 | | `6(2c+6)=-48` | | 2(2x-9)+1=-5x-17+9x | | –3(u+63)=84 | | 4x/3-7+x/5=9 | | -7+n/5=33 | | 2/4p+3=15 | | 11x2-10x=23 | | 2x−5/9=3 | | -19.1+2.7t=19.91+7.4t | | x2-6x-11=0 | | 2x−59=3 | | 6n-19+20=5n+5 | | 13x-(7x-5)=59 |